Tuesday, January 9, 2007

Characterization

In general, a biological neural network is composed of a group or groups of physically connected or functionally associated neurons. A single neuron can be connected to many other neurons and the total number of neurons and connections in a network can be extremely large. Connections, called synapses, are usually formed from axons to dendrites, though dendrodentritic microcircuits [Arbib, p.666] and other connections are possible. Apart from the electrical signalling, there are other forms of signaling that arise from neurotransmitter diffusion, which have an effect on electrical signaling. As such, neural networks are extremely complex. While a detailed description of neural systems seems currently unattainable, progress is made towards a better understanding of basic mechanisms.

Artificial intelligence and cognitive modeling try to simulate some properties of neural networks. While similar in their techniques, the former has the aim of solving particular tasks, while the latter aims to build mathematical models of biological neural systems.

In the artificial intelligence field, artificial neural networks have been applied successfully to speech recognition, image analysis and adaptive control, in order to construct software agents (in computer and video games) or autonomous robots. Most of the currently employed artificial neural networks for artificial intelligence are based on statistical estimation, optimisation and control theory.

The cognitive modelling field is the physical or mathematical modelling of the behaviour of neural systems; ranging from the individual neural level (e.g. modelling the spike response curves of neurons to a stimulus), through the neural cluster level (e.g. modelling the release and effects of dopamine in the basal ganglia) to the complete organism (e.g. behavioural modelling of the organism's response to stimuli).

No comments: